Reprinted from Mathematics Magazine 39.5(1966)308-309.

A Convex Surface Property

615. [March, 1966] Proposed by Joseph Hammer, University of Sydney, Australia.

Prove that in a three-dimensional convex surface whose volume is greater than the surface area numerically, infinitely many plane cross-sections can be found of which each area is greater than its perimeter.

Solution by Stanley Rabinowitz, Far Rockaway, New York.
Consider any line from a point on the surface to the point farthest away from it. Let this line be the z-axis, and one endpoint, the origin. Let V be the volume of the surface, S its surface area, $A(z)$ the area of any plane cross-section at height z, and $P(z)$ the perimeter of this cross-section. Then we have

$$
\int_{0}^{a} A(z) d z=V
$$

and

$$
\int_{0}^{a} P(z) d z=S
$$

Suppose that only finitely many plane cross-sections have $A(z)>P(z)$. Since we can change the value of a function at a finite number of points without altering the value of its integral, we can redefine $A(z)$ at these points such that $A(z)$ $\leqq P(z)$. Then for all $z, A(z) \leqq P(z)$. But upon integrating we find that $V<S$, a contradiction. Hence the theorem.

